/* * This file is part of lcd library for ssd1306/sh1106 oled-display. * * lcd library for ssd1306/sh1106 oled-display is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or any later version. * * lcd library for ssd1306/sh1106 oled-display is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with Foobar. If not, see . * * Diese Datei ist Teil von lcd library for ssd1306/sh1106 oled-display. * * lcd library for ssd1306/sh1106 oled-display ist Freie Software: Sie können es unter den Bedingungen * der GNU General Public License, wie von der Free Software Foundation, * Version 3 der Lizenz oder jeder späteren * veröffentlichten Version, weiterverbreiten und/oder modifizieren. * * lcd library for ssd1306/sh1106 oled-display wird in der Hoffnung, dass es nützlich sein wird, aber * OHNE JEDE GEWÄHRLEISTUNG, bereitgestellt; sogar ohne die implizite * Gewährleistung der MARKTFÄHIGKEIT oder EIGNUNG FÜR EINEN BESTIMMTEN ZWECK. * Siehe die GNU General Public License für weitere Details. * * Sie sollten eine Kopie der GNU General Public License zusammen mit diesem * Programm erhalten haben. Wenn nicht, siehe . * * lcd.h * * Created by Michael Koehler on 22.12.16. * Copyright 2016 Skie-Systems. All rights reserved. * * lib for OLED-Display with ssd1306/sh1106-Controller * first dev-version only for I2C-Connection * at ATMega328P like Arduino Uno * * at GRAPHICMODE lib needs SRAM for display * DISPLAY-WIDTH * DISPLAY-HEIGHT + 2 bytes */ #include "lcd.h" #include "font.h" #include /* TODO: setUp Font*/ const char *font = ssd1306oled_font6x8; static struct { uint8_t x; uint8_t y; } cursorPosition; #if defined GRAPHICMODE #include static uint8_t displayBuffer[DISPLAYSIZE]; uint16_t actualIndex = 0; #endif const uint8_t init_sequence [] PROGMEM = { // Initialization Sequence LCD_DISP_OFF, // Display OFF (sleep mode) 0x20, 0b00, // Set Memory Addressing Mode // 00=Horizontal Addressing Mode; 01=Vertical Addressing Mode; // 10=Page Addressing Mode (RESET); 11=Invalid 0xB0, // Set Page Start Address for Page Addressing Mode, 0-7 0xC8, // Set COM Output Scan Direction 0x00, // --set low column address 0x10, // --set high column address 0x40, // --set start line address 0x81, 0x3F, // Set contrast control register 0xA1, // Set Segment Re-map. A0=address mapped; A1=address 127 mapped. 0xA6, // Set display mode. A6=Normal; A7=Inverse 0xA8, 0x3F, // Set multiplex ratio(1 to 64) 0xA4, // Output RAM to Display // 0xA4=Output follows RAM content; 0xA5,Output ignores RAM content 0xD3, 0x00, // Set display offset. 00 = no offset 0xD5, // --set display clock divide ratio/oscillator frequency 0xF0, // --set divide ratio 0xD9, 0x22, // Set pre-charge period 0xDA, 0x12, // Set com pins hardware configuration 0xDB, // --set vcomh 0x20, // 0x20,0.77xVcc 0x8D, 0x14, // Set DC-DC enable }; #pragma mark LCD COMMUNICATION void lcd_command(uint8_t cmd[], uint8_t size) { i2c_start((LCD_I2C_ADR << 1) | 0); i2c_byte(0x00); // 0x00 for command, 0x40 for data for (uint8_t i=0; i (DISPLAY_WIDTH/6) || y > (DISPLAY_HEIGHT/8-1)) return;// out of display cursorPosition.x=x; cursorPosition.y=y; x = x * 6; // one char: 6 pixel width #if defined SSD1306 uint8_t commandSequence[] = {0xb0+y, 0x21, x, 0x7f}; #elif defined SH1106 uint8_t commandSequence[] = {0xb0+y, 0x21, 0x00+((2+x) & (0x0f)), 0x10+( ((2+x) & (0xf0)) >> 4 ), 0x7f}; #endif lcd_command(commandSequence, sizeof(commandSequence)); } void lcd_putc(char c){ switch (c) { case '\t': // tab if( (cursorPosition.x+4) < (DISPLAY_WIDTH/6-4) ){ lcd_gotoxy(cursorPosition.x+4, cursorPosition.y); }else{ lcd_gotoxy(DISPLAY_WIDTH/6, cursorPosition.y); } break; case '\n': // linefeed if(cursorPosition.y < (DISPLAY_HEIGHT/8-1)){ lcd_gotoxy(cursorPosition.x, ++cursorPosition.y); } break; case '\r': // carrige return lcd_gotoxy(0, cursorPosition.y); break; default: if((c > 127 || cursorPosition.x > 20 || c < 32) && (getCharCode(c) > 0) ) return; cursorPosition.x++; // mapping char c=getCharCode(c); uint8_t temp; // print char at display for (uint8_t i = 0; i < 6; i++) { // load bit-pattern from flash temp=pgm_read_byte(&font[c * 6 + i]); lcd_data((void*)&temp,1); // print font to ram, print 6 columns } break; } } #elif defined GRAPHICMODE #pragma mark - #pragma mark GRAPHICMODE void lcd_clrscr(void){ memset(displayBuffer, 0x00, sizeof(displayBuffer)); #if defined SSD1306 lcd_data(displayBuffer, sizeof(displayBuffer)); #elif defined SH1106 for (uint8_t i=0; i <= DISPLAY_HEIGHT/8; i++) { uint8_t actualLine[DISPLAY_WIDTH]; for (uint8_t j=0; j< DISPLAY_WIDTH; j++) { actualLine[j]=displayBuffer[i*DISPLAY_WIDTH+j]; } lcd_data(actualLine, sizeof(actualLine)); lcd_gotoxy(0, i); } #endif lcd_home(); } void lcd_gotoxy(uint8_t x, uint8_t y){ if( x > (DISPLAY_WIDTH/6) || y > (DISPLAY_HEIGHT/8-1)) return;// out of display cursorPosition.x=x; cursorPosition.y=y; x = x * 6; // one char: 6 pixel width actualIndex = (x)+(y*DISPLAY_WIDTH); #if defined SSD1306 uint8_t commandSequence[] = {0xb0+y, 0x21, x, 0x7f}; #elif defined SH1106 uint8_t commandSequence[] = {0xb0+y, 0x21, 0x00+((2+x) & (0x0f)), 0x10+( ((2+x) & (0xf0)) >> 4 ), 0x7f}; #endif lcd_command(commandSequence, sizeof(commandSequence)); } void lcd_putc(char c){ switch (c) { case '\t': // tab if( (cursorPosition.x+4) < (DISPLAY_WIDTH/6-4) ){ lcd_gotoxy(cursorPosition.x+4, cursorPosition.y); }else{ lcd_gotoxy(DISPLAY_WIDTH/6, cursorPosition.y); } break; case '\n': // linefeed if(cursorPosition.y < (DISPLAY_HEIGHT/8-1)){ lcd_gotoxy(cursorPosition.x, ++cursorPosition.y); } break; case '\r': // carrige return lcd_gotoxy(0, cursorPosition.y); break; default: if((actualIndex+1)%127 != 0){ if((c > 127 || cursorPosition.x > 20 || c < 32) && (getCharCode(c) > 0) ) return; cursorPosition.x++; // mapping char c=getCharCode(c); // print char at display for (uint8_t i = 0; i < 6; i++) { // load bit-pattern from flash displayBuffer[actualIndex+i] =pgm_read_byte(&font[c * 6 + i]); } } actualIndex += 6; break; } } void lcd_drawPixel(uint8_t x, uint8_t y, uint8_t color){ if( x > DISPLAY_WIDTH-1 || y > (DISPLAY_HEIGHT-1)) return; // out of Display if( color == WHITE){ displayBuffer[(uint8_t)(y / (DISPLAY_HEIGHT/8)) * DISPLAY_WIDTH +x] |= (1 << (y % (DISPLAY_HEIGHT/8))); } else { displayBuffer[(uint8_t)(y / (DISPLAY_HEIGHT/8)) * DISPLAY_WIDTH +x] &= ~(1 << (y % (DISPLAY_HEIGHT/8))); } } void lcd_drawLine(uint8_t x1, uint8_t y1, uint8_t x2, uint8_t y2, uint8_t color){ if( x1 > DISPLAY_WIDTH-1 || x2 > DISPLAY_WIDTH-1 || y1 > DISPLAY_HEIGHT-1 || y2 > DISPLAY_HEIGHT-1) return; int dx = abs(x2-x1), sx = x1 dy) { err += dy; x1 += sx; } /* e_xy+e_x > 0 */ if (e2 < dx) { err += dx; y1 += sy; } /* e_xy+e_y < 0 */ } } void lcd_drawRect(uint8_t px1, uint8_t py1, uint8_t px2, uint8_t py2, uint8_t color){ if( px1 > DISPLAY_WIDTH-1 || px2 > DISPLAY_WIDTH-1 || py1 > DISPLAY_HEIGHT-1 || py2 > DISPLAY_HEIGHT-1) return; lcd_drawLine(px1, py1, px2, py1, color); lcd_drawLine(px2, py1, px2, py2, color); lcd_drawLine(px2, py2, px1, py2, color); lcd_drawLine(px1, py2, px1, py1, color); } void lcd_fillRect(uint8_t px1, uint8_t py1, uint8_t px2, uint8_t py2, uint8_t color){ if( px1 > px2){ uint8_t temp = px1; px1 = px2; px2 = temp; temp = py1; py1 = py2; py2 = temp; } for (uint8_t i=0; i<=(py2-py1); i++){ lcd_drawLine(px1, py1+i, px2, py1+i, color); } } void lcd_drawCircle(uint8_t center_x, uint8_t center_y, uint8_t radius, uint8_t color){ if( ((center_x + radius) > DISPLAY_WIDTH-1) || ((center_y + radius) > DISPLAY_HEIGHT-1) || center_x < radius || center_y < radius) return; int16_t f = 1 - radius; int16_t ddF_x = 1; int16_t ddF_y = -2 * radius; int16_t x = 0; int16_t y = radius; lcd_drawPixel(center_x , center_y+radius, color); lcd_drawPixel(center_x , center_y-radius, color); lcd_drawPixel(center_x+radius, center_y , color); lcd_drawPixel(center_x-radius, center_y , color); while (x= 0) { y--; ddF_y += 2; f += ddF_y; } x++; ddF_x += 2; f += ddF_x; lcd_drawPixel(center_x + x, center_y + y, color); lcd_drawPixel(center_x - x, center_y + y, color); lcd_drawPixel(center_x + x, center_y - y, color); lcd_drawPixel(center_x - x, center_y - y, color); lcd_drawPixel(center_x + y, center_y + x, color); lcd_drawPixel(center_x - y, center_y + x, color); lcd_drawPixel(center_x + y, center_y - x, color); lcd_drawPixel(center_x - y, center_y - x, color); } } void lcd_fillCircle(uint8_t center_x, uint8_t center_y, uint8_t radius, uint8_t color) { for(uint8_t i=0; i<= radius;i++){ lcd_drawCircle(center_x, center_y, i, color); } } void lcd_drawBitmap(uint8_t x, uint8_t y, const uint8_t *picture, uint8_t width, uint8_t height, uint8_t color){ uint8_t i,j, byteWidth = (width+7)/8; for (j = 0; j < height; j++) { for(i=0; i < width;i++){ if(pgm_read_byte(picture + j * byteWidth + i / 8) & (128 >> (i & 7))){ lcd_drawPixel(x+i, y+j, color); } } } } void lcd_display() { #if defined SSD1306 lcd_gotoxy(0,0); lcd_data(displayBuffer, sizeof(displayBuffer)); #elif defined SH1106 for (uint8_t i=0; i < DISPLAY_HEIGHT/8; i++) { lcd_gotoxy(0, i); uint8_t actualLine[DISPLAY_WIDTH]; for (uint8_t j=0; j < DISPLAY_WIDTH; j++) { actualLine[j]=displayBuffer[i*DISPLAY_WIDTH+j]; } lcd_data(actualLine, sizeof(actualLine)); } #endif } #endif