Umstrukturierung des Quellcodes in mehr Dateien

main
Tom 9 months ago
parent 2bdecacf56
commit 957ac1fa8d

@ -1,2 +1,2 @@
:080000000032005802000C550B
:080000000203005802010C5537
:00000001FF

@ -46,7 +46,7 @@ FORMAT = ihex
TARGET = BJ-Keyer
# List C source files here. (C dependencies are automatically generated.)
SRC = main.c oled/i2c.c oled/lcd.c oled/font.c encoder.c
SRC = main.c oled/i2c.c oled/lcd.c oled/font.c encoder.c controls.c functions.c
# List Assembler source files here.
# Make them always end in a capital .S. Files ending in a lowercase .s
@ -134,7 +134,6 @@ SCANF_LIB_FLOAT = -Wl,-u,vfscanf -lscanf_flt
SCANF_LIB =
MATH_LIB = -lm
# External memory options
# 64 KB of external RAM, starting after internal RAM (ATmega128!),

@ -0,0 +1,317 @@
/** @file controls.c
* @brief Display und Bedienelemente
* @author Tom, DL7BJ
*/
#include "controls.h"
// Stringkonstanten für das Display
const char CALL[] = " DL7BJ ";
const char PRG[] = " BJ-Keyer ";
const char VER[] = " V1.0 ";
const char Trx1[] = "TRX 1";
const char Trx2[] = "TRX 2";
const char IambicA[] = "Iambic A";
const char IambicB[] = "Iambic B";
const char Ratio[] = "Ratio";
const char ReverseRL[] = " L - R °";
const char ReverseLR[] = " L ° R -";
const char SideToneOnOff[] = "Mithörton";
const char SideToneFreq[] = "Frequenz";
const char RiseTime[] = "Anstieg";
const char DebounceTime[] = "Entprl.";
const char Yes[] = "J";
const char No[] = "N";
const char Hz[] = "Hz";
void Drehencoder(void)
{
int st = 0;
static int last;
if(!(bMenuCtrl.Config))
{
EncoderMinMax(5,50);
st = EncoderRead(1);
if(bConfig.WpM != st)
{
bConfig.WpM = st; // neuen Wert in bConfig speichern
bMerker.WpMChanged = 1; // Merker für Timer 0 setzen
bMenuCtrl.Update = 1; // Merker für UpdateDisplay setzen
EncoderPos = st; // neuen Werte in EncoderPos speichern
WpM = bConfig.WpM; // neuen Wert in WpM übernehmen
cli();
StoreEEprom = 0; // Timer 0 Variable löschen für Update EEprom
sei();
}
}
if((bMenuCtrl.buttonPressed == 1) && (bMenuCtrl.Config == 0))
{
bMenuCtrl.Config = 1;
MenuCtrlTimer = 0;
bMenuCtrl.buttonPressed = 0;
EncoderPos = EncoderRead(1);
bMenuCtrl.CurMenue = EncoderPosConfig;
EncoderWrite(EncoderPosConfig);
bMenuCtrl.Update = 1;
}
if((bMenuCtrl.buttonPressedLong == 1) && (bMenuCtrl.Config == 1))
{
bMenuCtrl.Config = 0;
bMenuCtrl.Update = 1;
bMenuCtrl.buttonPressedLong = 0;
bMenuCtrl.buttonPressed = 0;
bMenuCtrl.m_buttonPressed = 0;
MenuCtrlTimer = 0;
EncoderPosConfig = EncoderRead(1);
EncoderWrite(EncoderPos);
bMenuCtrl.ClrScr = 1;
Beep();
}
if(bMenuCtrl.Config == 1)
{
if(!bMenuCtrl.buttonPressed)
{
EncoderMinMax(1,M_MAX);
st = EncoderRead(1);
sprintf(sdebug,"Encoder %i\r\n",st);
if(last != st)
{
SendSerialString(sdebug);
bMenuCtrl.CurMenue = st;
bMenuCtrl.Update = 1;
}
last = st;
}
if(bMenuCtrl.buttonPressed)
{
bMenuCtrl.m_buttonPressed = 1;
bMenuCtrl.buttonPressed = 0;
}
if(bMenuCtrl.m_buttonPressed == 1)
{
UpdateDisplay();
switch(bMenuCtrl.CurMenue)
{
case M_TRX1:
if(bConfig.TRX == 2)
bConfig.TRX = 0;
else
bConfig.TRX = 1;
bMenuCtrl.m_buttonPressed = 0;
break;
case M_TRX2:
if(bConfig.TRX == 1)
bConfig.TRX = 0;
else
bConfig.TRX = 2;
bMenuCtrl.m_buttonPressed = 0;
break;
case M_IAMBICA:
bConfig.IambicMode = 1;
bMenuCtrl.m_buttonPressed = 0;
break;
case M_IAMBICB:
bConfig.IambicMode = 2;
bMenuCtrl.m_buttonPressed = 0;
break;
case M_REVERSE:
if(bConfig.Reverse == 1)
bConfig.Reverse = 0;
else
bConfig.Reverse = 1;
bMenuCtrl.m_buttonPressed = 0;
if(bConfig.Reverse == 1)
PaddleMode = PADDLE_REVERSE;
else
PaddleMode = PADDLE_NORMAL;
bMenuCtrl.Update = 1;
break;
case M_RATIO:
EncoderMinMax(15,30);
st = EncoderRead(1);
bConfig.Ratio = st;
if(bConfig.Ratio > 30) bConfig.Ratio = 30;
if(bConfig.Ratio < 15) bConfig.Ratio = 15;
bMenuCtrl.Update = 1;
break;
case M_TON_FREQ:
break;
}
}
}
}
void ConfigMenue(void)
{
char line[22];
lcd_charMode(NORMAL);
lcd_gotoxy(0,0);
lcd_puts(CLEARLINE);
lcd_gotoxy(0,0);
sprintf(line,"%s - %i","Einstellungen", bMenuCtrl.CurMenue);
lcd_puts(line);
lcd_charMode(DOUBLESIZE);
lcd_gotoxy(0,3);
lcd_puts(CLEARLINE);
switch(bMenuCtrl.CurMenue)
{
case M_TRX1:
lcd_gotoxy(0,3);
if((bConfig.TRX == 1) || (bConfig.TRX == 0))
sprintf(line,"[%s]", "TRX 1");
else
sprintf(line," %s ", "TRX 1");
lcd_puts(line);
break;
case M_TRX2:
lcd_gotoxy(0,3);
if((bConfig.TRX == 2) || (bConfig.TRX == 0))
sprintf(line,"[%s]", "TRX 2");
else
sprintf(line," %s ", "TRX 2");
lcd_puts(line);
break;
case M_IAMBICA:
lcd_gotoxy(0,3);
if(bConfig.IambicMode == 1)
sprintf(line,"[%s]", IambicA);
else
sprintf(line," %s ", IambicB);
lcd_puts(line);
break;
case M_IAMBICB:
lcd_gotoxy(0,3);
if(bConfig.IambicMode == 2)
sprintf(line,"[%s]", IambicB);
else
sprintf(line," %s ", IambicB);
lcd_puts(line);
break;
case M_REVERSE:
lcd_gotoxy(0,3);
if(bConfig.Reverse == 0)
sprintf(line,"%s", ReverseLR);
else
sprintf(line,"%s", ReverseRL);
lcd_puts(line);
break;
case M_RATIO:
lcd_gotoxy(0,3);
if(bConfig.Ratio == 30)
sprintf(line,"%s", "Ratio 3:1");
else
sprintf(line,"%s %i:1", "Ratio", bConfig.Ratio/10);
lcd_puts(line);
break;
case M_TON_FREQ:
lcd_gotoxy(0,3);
if(bConfig.FrequencySidetone == 650)
sprintf(line,"%s", "Ton 650Hz");
else
sprintf(line,"%s %uHz", "Ton", bConfig.FrequencySidetone);
lcd_puts(line);
break;
case M_TON:
lcd_gotoxy(0,3);
if(bConfig.SidetoneEnabled == 1)
sprintf(line,"%s", "Ton an");
else
sprintf(line,"%s", "Ton aus");
lcd_puts(line);
break;
case M_WPMBPM:
lcd_gotoxy(0,3);
if(bConfig.WpMBpM == 0)
sprintf(line,"%s", "WpM");
else
sprintf(line,"%s", "BpM");
lcd_puts(line);
break;
case M_RISETIME:
lcd_gotoxy(0,3);
sprintf(line,"%s %ims",RiseTime, bConfig.RiseTime);
lcd_puts(line);
break;
case M_DEBOUNCE:
lcd_gotoxy(0,3);
sprintf(line,"%s %ims",DebounceTime, bConfig.DebounceTime);
lcd_puts(line);
break;
}
bMenuCtrl.Update = 0;
lcd_charMode(NORMAL);
}
void DisplayVersion(void)
{
lcd_init(LCD_DISP_ON);
lcd_charMode(DOUBLESIZE);
lcd_home();
lcd_puts(PRG);
lcd_gotoxy(1,2);
lcd_puts(VER);
lcd_gotoxy(2,4);
lcd_puts(CALL);
SideToneOff();
DelayMilliSeconds(1000);
}
/** \brief UpdateDisplay
*
* Aktualisierung der Anzeigen auf dem Display je nach
* aktueller Funktion.
*
* DOUBLESIZE 4x10 character
* NORMALSIZE 8x21 character
*/
void UpdateDisplay(void)
{
char line[22];
if(bMenuCtrl.Update)
{
if(bMenuCtrl.ClrScr)
{
lcd_clrscr();
bMenuCtrl.ClrScr = 0;
bMenuCtrl.Update = 1;
}
if(!(bMenuCtrl.Config))
{
lcd_charMode(DOUBLESIZE);
lcd_gotoxy(4,3);
if(bConfig.WpMBpM)
sprintf(line,"%i WpM ",bConfig.WpM);
else
sprintf(line,"%i BpM ", bConfig.WpM*5);
lcd_puts(line);
lcd_charMode(NORMAL);
lcd_gotoxy(13,0);
if(bConfig.IambicMode == 1)
sprintf(line,"%s", IambicA);
if(bConfig.IambicMode == 2)
sprintf(line,"%s", IambicB);
lcd_puts(line);
lcd_gotoxy(0,0);
if(bConfig.TRX == 1)
sprintf(line, "%s", Trx1);
if(bConfig.TRX == 2)
sprintf(line, "%s", Trx2);
if(bConfig.TRX == 0)
sprintf(line, "%s %s", Trx1, Trx2);
lcd_puts(line);
}
if(bMenuCtrl.Config)
{
ConfigMenue();
}
bMenuCtrl.Update = 0;
}
}

@ -0,0 +1,26 @@
/** @file controls.h
* @brief Include Datei für controls.c
* @author Tom, DL7BJ
*/
#ifndef CONTROLS_H_INCLUDED
#define CONTROLS_H_INCLUDED
#include "globals.h"
#include "encoder.h"
// Externe Variablen
extern struct Config bConfig;
extern struct MenuCtrl bMenuCtrl;
extern struct Merker bMerker;
extern uint16_t MenuCtrlTimer;
extern uint8_t WpM;
// Externe Funktionen
extern void Boop(void);
extern void Beep(void);
// Prototypes
void Drehencoder(void);
void ConfigMenue(void);
void UpdateDisplay(void);
#endif

@ -1,40 +1,83 @@
/** @file functions.c
* @brief Diverse Funktionen
* @author Tom, DL7BJ
*/
#include "functions.h"
void delayms(uint16_t ms)
{
t_wait = 0;
while(t_wait < ms);
}
// EEProm
uint8_t Dummy;
uint8_t ee_Dummy EEMEM = 0x55; // Dummy for Address 0
uint8_t ee_WpM EEMEM = 12; // WpM
uint8_t ee_Sidetone EEMEM = 1; // Mithörton An (1) oder Aus (0)
uint16_t ee_FrequencySidetone EEMEM = 600; // Frequenz des Mithörtons
uint8_t ee_IambicMode EEMEM = 0; // Iambic Mode A oder B
uint8_t ee_Weight EEMEM = 3; // Dah dit Ratio
uint8_t ee_TRX EEMEM = 2; // TRX 1 (0), TRX 2 (1), Beide (2)
void IntEnable(void)
{
SREG = sreg_tmp;
sei();
}
// Stringkonstanten für VT100 Terminals
char CLRSCR[] = "\033[2J";
void IntDisable(void)
/** @brief Ein paar Millisekunden warten
*
* Dieser Variable muss atomar sein, weil es eine 16Bit Variable ist,
* die im Timer 0 verwendet wird.
* @param Zeit in Millisekunden, die gewartet werden soll
* @return void
*/
void DelayMilliSeconds(uint16_t ms)
{
sreg_tmp = SREG;
cli();
t_delayms = 0;
// ResetMilliSeconds();
//ATOMIC_BLOCK(ATOMIC_FORCEON) {
while(t_delayms < ms);
//}
}
/** \brief MilliSeconds
*
* Get the milliseconds of TIMER 0
*
*/
uint32_t MilliSeconds(void)
/** @brief Wert des Zählers für Millisekunden lesen
*
* Dieser Variable muss atomar sein, weil es eine 16Bit Variable ist,
* die im Timer 0 verwendet wird.
* @param none
* @return milliseconds
*/
uint16_t GetMilliSeconds(void)
{
uint32_t m;
uint16_t m;
ATOMIC_BLOCK(ATOMIC_FORCEON){
m = ms;
m = t_delayms;
}
return m;
}
/** @brief Setzt den Zähler für Millisekunden auf 0
*
* Dieser Variable muss atomar sein, weil es eine 16Bit Variable ist,
* die im Timer 0 verwendet wird.
* @param none
* @return none
*/
void ResetMilliSeconds(void)
{
ATOMIC_BLOCK(ATOMIC_FORCEON){
ms = 0;
}
//ATOMIC_BLOCK(ATOMIC_FORCEON){
t_delayms = 0;
//}
}
/** @brief SREG wieder herstellen und Interrupts erlauben
* @param none
* @return none
*/
void IntEnable(void)
{
SREG = sreg_tmp;
sei();
}
/** @brief SREG sichern und Interrupts verbieten
* @param none
* @return none
*/
void IntDisable(void)
{
sreg_tmp = SREG;
cli();
}
/** \brief EEPROM schreiben
@ -118,16 +161,18 @@ void SideToneOff(void)
StateRiseTimeCounter = 0;
}
/*
** TXSidetoneKey
** TXKey
**
** Tastung TRX1, TRX2 oder beide
*/
void TXSidetoneKey(uint8_t State, uint8_t SendingType)
void TXKey(uint8_t State, uint8_t SendingType)
{
if((State) && (KeyState == 0))
{
if(KeyTX)
{
SideToneOn();
PORTC |= (1<<MORSE_LED);
sbi(PORTC,MORSE_LED);
KeyState = 1;
}
}
@ -138,7 +183,7 @@ void TXSidetoneKey(uint8_t State, uint8_t SendingType)
if(KeyTX)
{
SideToneOff();
PORTC &= ~(1<<MORSE_LED);
cbi(PORTC,MORSE_LED);
}
KeyState = 0;
}
@ -153,7 +198,7 @@ void CheckStraightKey(void)
{
if(PIND & (1<<STRAIGHT_KEY))
{
TXSidetoneKey(0,MANUAL_SENDING);
TXKey(0,MAN);
StateStraightKeyPressed = 0;
} else {
if(StateStraightKeyPressed == 0)
@ -163,104 +208,69 @@ void CheckStraightKey(void)
}
if(StateStraightKeyPressed == 2)
{
TXSidetoneKey(1,MANUAL_SENDING);
}
}
TXKey(1,MAN);
}
}
}
/** \brief CheckPaddles
* Original code K3NG keyer line 5654
*
**
*/
void CheckPaddles(void)
{
static uint8_t laststate = NOTHING;
CheckDitPaddle();
CheckDahPaddle();
}
/** \brief CheckDitPaddle
*
*
*/
void CheckDitPaddle(void)
{
uint8_t pinvalue = 0;
uint8_t ditpaddle = 0;
if(KeyerMode == SINGLE_PADDLE)
{
switch(laststate)
{
case DIT_DAH_OFF:
if(DitBuffer) {
if(DahBuffer)
DahBuffer = 0;
else
laststate = DIT_DAH_OFF;
} else {
if(DahBuffer)
laststate = DAH_DIT_OFF;
else
laststate = NOTHING;
}
break;
case DIT_DAH_ON:
if(DahBuffer) {
if(DitBuffer) {
laststate = DAH_DIT_ON;
DitBuffer = 0;
} else
laststate = DAH_DIT_OFF;
} else {
if(!DitBuffer)
laststate = NOTHING;
}
break;
case DAH_DIT_OFF:
if(DahBuffer) {
if(DitBuffer)
DitBuffer = 0;
else
laststate = DAH_DIT_OFF;
} else {
if(DitBuffer)
laststate = DIT_DAH_OFF;
else
laststate = NOTHING;
}
break;
case DAH_DIT_ON:
if(DitBuffer) {
if(DahBuffer) {
laststate = DIT_DAH_ON;
DahBuffer = 0;
} else
laststate = DIT_DAH_OFF;
} else {
if(!DahBuffer)
laststate = NOTHING;
}
if(PaddleMode == PADDLE_NORMAL) // no reverse paddle
ditpaddle = LEFT_PADDLE;
else
ditpaddle = RIGHT_PADDLE; // reverse paddle
break;
case NOTHING:
break;
}
}
// service_tx_inhibit_and_pause{}
pinvalue = ReadKeyPin(ditpaddle);
if(pinvalue == 0)
DitBuffer = 1;
}
/*
** CheckDahPaddle
*/
void CheckDahPaddle(void)
{
uint8_t pinvalue = 0;
uint8_t dahpaddle = 0;
if(PaddleMode == PADDLE_NORMAL) // no reverse paddle
dahpaddle = RIGHT_PADDLE;
else
dahpaddle = LEFT_PADDLE; // reverse paddle
/** \brief ServiceStraightKey
* Original code K3NG keyer line 2762
*
* ***TODO
*/
long ServiceStraightKey(void)
{
}
pinvalue = ReadKeyPin(dahpaddle);
if(pinvalue == 0) {
if(DahBuffer == 0) {
DahCounter++;
DitCounter = 0;
}
DahBuffer = 1;
}
}
/** \brief Schleife für die Dauer der Zeichenelemente
**
** lengths = count of dits * weigthing / 50
** additional_time_ms = increase pausing between elements
** speed_wpm_in = speed in WpM
** sending_type =
** len = count of dits * weigthing / 50
** AddMiliSeconds = increase pausing between elements
** SendingType = AUTO or MAN
*/
void Loop(uint8_t len, uint8_t AddMilliSeconds, uint8_t inWpM, uint8_t SendingType)
void ElementLoop(uint8_t len, uint8_t AddMilliSeconds, uint8_t SendingType)
{
uint16_t LoE; // lengths of one element in ms
uint16_t ticks; // lengths of len elements + AddMilliSeconds in ms
@ -268,7 +278,7 @@ void Loop(uint8_t len, uint8_t AddMilliSeconds, uint8_t inWpM, uint8_t SendingTy
if((len == 0) || (len < 0))
return;
LoE = 1200/inWpM;
LoE = 1200/WpM;
ticks = LoE * len + AddMilliSeconds;
mselement = 0; // Reset Timer 0 variable
while(mselement < ticks) {
@ -298,10 +308,10 @@ void Loop(uint8_t len, uint8_t AddMilliSeconds, uint8_t inWpM, uint8_t SendingTy
void SendDit(uint8_t SendingType)
{
SendStatus = SENDING_DIT;
TXSidetoneKey(1,SendingType);
Loop(1,0,WpM,SendingType);
TXSidetoneKey(0,SendingType);
Loop(1,0,WpM,SendingType);
TXKey(1,SendingType);
ElementLoop(1,0,SendingType);
TXKey(0,SendingType);
ElementLoop(1,0,SendingType);
}
/** \brief Send a dah
** A Dah with weight = 50 has the length of 3 Dits.
@ -309,10 +319,10 @@ void SendDit(uint8_t SendingType)
void SendDah(uint8_t SendingType)
{
SendStatus = SENDING_DAH;
TXSidetoneKey(1,SendingType);
Loop(3,0,WpM,SendingType);
TXSidetoneKey(0,SendingType);
Loop(1,0,WpM,SendingType);
TXKey(1,SendingType);
ElementLoop(3,0,SendingType);
TXKey(0,SendingType);
ElementLoop(1,0,SendingType);
}
/*
** Set sidetone frequency
@ -331,7 +341,7 @@ void Tone(uint16_t f, uint8_t duration)
{
SetFrequency(f);
SideToneOn();
delayms(duration);
DelayMilliSeconds(duration);
SideToneOff();
SetFrequency(bConfig.FrequencySidetone);
}
@ -346,65 +356,63 @@ void Beep(void)
void BeepBoop(void)
{
sbi(PORTB,AUDIO_EN);
delayms(10);
DelayMilliSeconds(10);
Beep();
delayms(100);
DelayMilliSeconds(100);
Boop();
}
void SendChar(unsigned char c)
{
switch(c)
{
case 'A': SendDit(AUTOMATIC); SendDah(AUTOMATIC); break;
case 'B': SendDah(AUTOMATIC); SendDit(AUTOMATIC); SendDit(AUTOMATIC); SendDit(AUTOMATIC); break;
case 'C': SendDit(AUTOMATIC); SendDah(AUTOMATIC); SendDit(AUTOMATIC); SendDah(AUTOMATIC); break;
case 'D': SendDah(AUTOMATIC); SendDit(AUTOMATIC); SendDit(AUTOMATIC); break;
case 'E': SendDit(AUTOMATIC); break;
case 'F': SendDit(AUTOMATIC); SendDah(AUTOMATIC); SendDit(AUTOMATIC); SendDit(AUTOMATIC); break;
case 'G': SendDah(AUTOMATIC); SendDah(AUTOMATIC); SendDit(AUTOMATIC); break;
case 'H': SendDit(AUTOMATIC); SendDit(AUTOMATIC); SendDit(AUTOMATIC); SendDit(AUTOMATIC); break;
case 'I': SendDit(AUTOMATIC); SendDit(AUTOMATIC); break;
case 'J': SendDit(AUTOMATIC); SendDah(AUTOMATIC); SendDah(AUTOMATIC); SendDah(AUTOMATIC); break;
case 'K': SendDah(AUTOMATIC); SendDit(AUTOMATIC); SendDah(AUTOMATIC); break;
case 'L': SendDit(AUTOMATIC); SendDah(AUTOMATIC); SendDit(AUTOMATIC); SendDit(AUTOMATIC); break;
case 'M': SendDah(AUTOMATIC); SendDah(AUTOMATIC); break;
case 'N': SendDah(AUTOMATIC); SendDit(AUTOMATIC); break;
case 'O': SendDah(AUTOMATIC); SendDah(AUTOMATIC); SendDah(AUTOMATIC); break;
case 'P': SendDit(AUTOMATIC); SendDah(AUTOMATIC); SendDah(AUTOMATIC); SendDit(AUTOMATIC); break;
case 'Q': SendDah(AUTOMATIC); SendDah(AUTOMATIC); SendDit(AUTOMATIC); SendDah(AUTOMATIC); break;
case 'R': SendDit(AUTOMATIC); SendDah(AUTOMATIC); SendDit(AUTOMATIC); break;
case 'S': SendDit(AUTOMATIC); SendDit(AUTOMATIC); SendDit(AUTOMATIC); break;
case 'T': SendDah(AUTOMATIC); break;
case 'U': SendDit(AUTOMATIC); SendDit(AUTOMATIC); SendDah(AUTOMATIC); break;
case 'V': SendDit(AUTOMATIC); SendDit(AUTOMATIC); SendDit(AUTOMATIC); SendDah(AUTOMATIC); break;
case 'W': SendDit(AUTOMATIC); SendDah(AUTOMATIC); SendDah(AUTOMATIC); break;
case 'X': SendDah(AUTOMATIC); SendDit(AUTOMATIC); SendDit(AUTOMATIC); SendDah(AUTOMATIC); break;
case 'Y': SendDah(AUTOMATIC); SendDit(AUTOMATIC); SendDah(AUTOMATIC); SendDah(AUTOMATIC); break;
case 'Z': SendDit(AUTOMATIC); SendDit(AUTOMATIC); SendDah(AUTOMATIC); SendDah(AUTOMATIC); break;
case '0': SendDah(AUTOMATIC); SendDah(AUTOMATIC); SendDah(AUTOMATIC); SendDah(AUTOMATIC); SendDah(AUTOMATIC); break;
case '1': SendDit(AUTOMATIC); SendDah(AUTOMATIC); SendDah(AUTOMATIC); SendDah(AUTOMATIC); SendDah(AUTOMATIC); break;
case '2': SendDit(AUTOMATIC); SendDit(AUTOMATIC); SendDah(AUTOMATIC); SendDah(AUTOMATIC); break;
case '3': SendDit(AUTOMATIC); SendDit(AUTOMATIC); SendDit(AUTOMATIC); SendDah(AUTOMATIC); SendDah(AUTOMATIC); break;
case '4': SendDit(AUTOMATIC); SendDit(AUTOMATIC); SendDit(AUTOMATIC); SendDit(AUTOMATIC); SendDah(AUTOMATIC); break;
case '5': SendDit(AUTOMATIC); SendDit(AUTOMATIC); SendDit(AUTOMATIC); SendDit(AUTOMATIC); SendDit(AUTOMATIC); break;
case '6': SendDah(AUTOMATIC); SendDit(AUTOMATIC); SendDit(AUTOMATIC); SendDit(AUTOMATIC); SendDit(AUTOMATIC); break;
case '7': SendDah(AUTOMATIC); SendDah(AUTOMATIC); SendDit(AUTOMATIC); SendDit(AUTOMATIC); SendDit(AUTOMATIC); break;
case '8': SendDah(AUTOMATIC); SendDah(AUTOMATIC); SendDah(AUTOMATIC); SendDit(AUTOMATIC); SendDit(AUTOMATIC); break;
case '9': SendDah(AUTOMATIC); SendDah(AUTOMATIC); SendDah(AUTOMATIC); SendDah(AUTOMATIC); SendDit(AUTOMATIC); break;
case '=': SendDah(AUTOMATIC); SendDit(AUTOMATIC); SendDit(AUTOMATIC); SendDit(AUTOMATIC); SendDah(AUTOMATIC); break;
case '/': SendDah(AUTOMATIC); SendDit(AUTOMATIC); SendDit(AUTOMATIC); SendDah(AUTOMATIC); SendDit(AUTOMATIC); break;
case '.': SendDit(AUTOMATIC); SendDah(AUTOMATIC); SendDit(AUTOMATIC); SendDah(AUTOMATIC); SendDit(AUTOMATIC); SendDah(AUTOMATIC); break;
case ',': SendDah(AUTOMATIC); SendDah(AUTOMATIC); SendDit(AUTOMATIC); SendDit(AUTOMATIC); SendDah(AUTOMATIC); SendDah(AUTOMATIC); break;
case '?': SendDit(AUTOMATIC); SendDit(AUTOMATIC); SendDah(AUTOMATIC); SendDah(AUTOMATIC); SendDit(AUTOMATIC); SendDit(AUTOMATIC); break;
// ***TODO Umlaute
// ***TODO Sonderzeichen
}
Loop(3,0,WpM,AUTOMATIC);
switch(c)
{
// Buchstaben
case 'A': SendDit(AUTO); SendDah(AUTO); break;
case 'B': SendDah(AUTO); SendDit(AUTO); SendDit(AUTO); SendDit(AUTO); break;
case 'C': SendDit(AUTO); SendDah(AUTO); SendDit(AUTO); SendDah(AUTO); break;
case 'D': SendDah(AUTO); SendDit(AUTO); SendDit(AUTO); break;
case 'E': SendDit(AUTO); break;
case 'F': SendDit(AUTO); SendDah(AUTO); SendDit(AUTO); SendDit(AUTO); break;
case 'G': SendDah(AUTO); SendDah(AUTO); SendDit(AUTO); break;
case 'H': SendDit(AUTO); SendDit(AUTO); SendDit(AUTO); SendDit(AUTO); break;
case 'I': SendDit(AUTO); SendDit(AUTO); break;
case 'J': SendDit(AUTO); SendDah(AUTO); SendDah(AUTO); SendDah(AUTO); break;
case 'K': SendDah(AUTO); SendDit(AUTO); SendDah(AUTO); break;
case 'L': SendDit(AUTO); SendDah(AUTO); SendDit(AUTO); SendDit(AUTO); break;
case 'M': SendDah(AUTO); SendDah(AUTO); break;
case 'N': SendDah(AUTO); SendDit(AUTO); break;
case 'O': SendDah(AUTO); SendDah(AUTO); SendDah(AUTO); break;
case 'P': SendDit(AUTO); SendDah(AUTO); SendDah(AUTO); SendDit(AUTO); break;
case 'Q': SendDah(AUTO); SendDah(AUTO); SendDit(AUTO); SendDah(AUTO); break;
case 'R': SendDit(AUTO); SendDah(AUTO); SendDit(AUTO); break;
case 'S': SendDit(AUTO); SendDit(AUTO); SendDit(AUTO); break;
case 'T': SendDah(AUTO); break;
case 'U': SendDit(AUTO); SendDit(AUTO); SendDah(AUTO); break;
case 'V': SendDit(AUTO); SendDit(AUTO); SendDit(AUTO); SendDah(AUTO); break;
case 'W': SendDit(AUTO); SendDah(AUTO); SendDah(AUTO); break;
case 'X': SendDah(AUTO); SendDit(AUTO); SendDit(AUTO); SendDah(AUTO); break;
case 'Y': SendDah(AUTO); SendDit(AUTO); SendDah(AUTO); SendDah(AUTO); break;
case 'Z': SendDit(AUTO); SendDit(AUTO); SendDah(AUTO); SendDah(AUTO); break;
// Zahlen
case '0': SendDah(AUTO); SendDah(AUTO); SendDah(AUTO); SendDah(AUTO); SendDah(AUTO); break;
case '1': SendDit(AUTO); SendDah(AUTO); SendDah(AUTO); SendDah(AUTO); SendDah(AUTO); break;
case '2': SendDit(AUTO); SendDit(AUTO); SendDah(AUTO); SendDah(AUTO); break;
case '3': SendDit(AUTO); SendDit(AUTO); SendDit(AUTO); SendDah(AUTO); SendDah(AUTO); break;
case '4': SendDit(AUTO); SendDit(AUTO); SendDit(AUTO); SendDit(AUTO); SendDah(AUTO); break;
case '5': SendDit(AUTO); SendDit(AUTO); SendDit(AUTO); SendDit(AUTO); SendDit(AUTO); break;
case '6': SendDah(AUTO); SendDit(AUTO); SendDit(AUTO); SendDit(AUTO); SendDit(AUTO); break;
case '7': SendDah(AUTO); SendDah(AUTO); SendDit(AUTO); SendDit(AUTO); SendDit(AUTO); break;
case '8': SendDah(AUTO); SendDah(AUTO); SendDah(AUTO); SendDit(AUTO); SendDit(AUTO); break;
case '9': SendDah(AUTO); SendDah(AUTO); SendDah(AUTO); SendDah(AUTO); SendDit(AUTO); break;
// Sonderzeichen
case '=': SendDah(AUTO); SendDit(AUTO); SendDit(AUTO); SendDit(AUTO); SendDah(AUTO); break;
case '/': SendDah(AUTO); SendDit(AUTO); SendDit(AUTO); SendDah(AUTO); SendDit(AUTO); break;
case '.': SendDit(AUTO); SendDah(AUTO); SendDit(AUTO); SendDah(AUTO); SendDit(AUTO); SendDah(AUTO); break;
case ',': SendDah(AUTO); SendDah(AUTO); SendDit(AUTO); SendDit(AUTO); SendDah(AUTO); SendDah(AUTO); break;
case '?': SendDit(AUTO); SendDit(AUTO); SendDah(AUTO); SendDah(AUTO); SendDit(AUTO); SendDit(AUTO); break;
case '@': SendDit(AUTO); SendDah(AUTO); SendDah(AUTO); SendDit(AUTO); SendDah(AUTO); SendDit(AUTO); break;
}
ElementLoop(3,0,WpM);
}

@ -1,8 +1,10 @@
#ifndef FUNCTIONS_H_INCLUDED
#define FUNCTIONS_H_INCLUDED
#define TRUE 0x1
#define FALSE 0x0
#include "main.h"
#define TRUE 0x1
#define FALSE 0x0
#define PI 3.1415926535897932384626433832795
#define HALF_PI 1.5707963267948966192313216916398
@ -10,26 +12,32 @@
#define DEG_TO_RAD 0.017453292519943295769236907684886
#define RAD_TO_DEG 57.295779513082320876798154814105
uint8_t sreg_tmp;
uint8_t sreg_tmp;
// Prototypes
void ElementLoop(float lengths, float additional_time_ms, int speed_wpm_on, uint8_t sending_type);
void ElementLoop(uint8_t Len, uint8_t AddMilliSeconds, uint8_t SendingType);
uint8_t ReadKeyPin(uint8_t pin);
void CheckPaddles(void);
// Sidetone
void SideToneOn(void);
void SideToneOff(void);
void Tone(uint16_t f, uint8_t duration);
void Boop(void);
void Beep(void);
void BeepBoop(void);
// Interrupt
void IntDisable(void);
void IntEnable(void);
// EEPROM
void WriteEEprom(void);
void ReadEEprom(void);
void WriteEEpromWpM(void);
void ReadEEpromWpM(void);
// Serielle Schnittstelle
void SendSerialString(char *s);
void SendSerialChar(unsigned char data);
// Delay Millis
void DelayMilliSeconds(uint16_t ms);
void ResetMilliSeconds(void);
uint16_t GetMilliSeconds(void);
#endif

@ -1,18 +1,17 @@
/*
* BJ-Keyer
*
* 2023-07-29 Tom, DL7BJ
*
*/
#ifndef BJ-KEYER_H_INCLUDED
#define BJ-KEYER_H_INCLUDED
#ifndef GLOBALS_H_INCLUDED
#define GLOBALS_H_INCLUDED
#define F_CPU 16000000UL
#define PRESCALER 8
#define SINEWAVELENGTH 64
#define F_CPUPRESIN (F_CPU/(PRESCALER*SINEWAVELENGTH))
#define USART_BAUDRATE 9600
#define UBRR_VALUE (((F_CPU/(USART_BAUDRATE*16UL)))-1)
#define LENGTH 256
#define AMP 127
#define OFFSET 128
#define PI2 6.283185
#include <stdlib.h>
#include <stdio.h>
@ -20,7 +19,7 @@
#include <string.h>
#include <math.h>
#include <inttypes.h>
#include <avr/io.h>
#include <avr/pgmspace.h>
#include <avr/wdt.h>
@ -29,48 +28,22 @@
#include <util/delay.h>
#include <util/atomic.h>
#define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit)) // clear bit
#define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit)) // set bit
#include "oled/i2c.h"
#include "oled/lcd.h"
#include "oled/font.h"
#include "encoder.h"
#include "functions.h"
// Const strings for display
const char CALL[] = " DL7BJ ";
const char PRG[] = " BJ-Keyer ";
const char VER[] = " V1.0 ";
const char Trx1[] = "TRX 1";
const char Trx2[] = "TRX 2";
const char IambicA[] = "Iambic A";
const char IambicB[] = "Iambic B";
const char Ratio[] = "Ratio";
const char ReverseRL[] = " L - R °";
const char ReverseLR[] = " L ° R -";
const char SideToneOnOff[] = "Mithörton";
const char SideToneFreq[] = "Frequenz";
const char RiseTime[] = "Anstieg";
const char DebounceTime[] = "Entprl.";
const char Yes[] = "J";
const char No[] = "N";
const char Hz[] = "Hz";
// Const strings for VT100 Terminals
const char CLRSCR[] = "\033[2J";
#ifndef EEMEM
#define EEMEM __attribute__ ((section (".eeprom")))
#endif
#ifndef NOINIT
#define NOINIT __attribute__ ((section (".noinit")))
#endif
#define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit)) // clear bit
#define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit)) // set bit
#define L_WAIT 500 // Frequency for debug LED Timer 0
// Keying states
#define NOTHING 0
#define DIT_DAH_OFF 1
@ -85,20 +58,16 @@ const char CLRSCR[] = "\033[2J";
// Paddle Mode
#define PADDLE_NORMAL 0
#define PADDLE_REVERSE 1
// Machine Mode
#define NORMAL 0
#define COMMAND 1
// Sending Mode
#define SENDING_NOTHING 0
#define SENDING_DIT 1
#define SENDING_DAH 2
#define SENDING_ELEMENT_SPACE 3
#define SENDING_STRAIGHT 4
//
#define AUTOMATIC_SENDING 0
#define AUTOMATIC 0
#define MANUAL 1
#define MANUAL_SENDING 1
// Sending Type
#define AUTO 0 // Automatische Pausen zwischen Elementen
#define MAN 1 // Manuelle Pausen zwischen Elementen
// Side Tone
#define SIDETONE_OFF 0
#define SIDETONE_ON 1
@ -121,6 +90,9 @@ const char CLRSCR[] = "\033[2J";
// States
#define ON 1
#define OFF 0
#define NO_KEY_PRESSED 0
#define KEY_PRESSED_DEBOUNCE 1
#define KEY_PRESSED 2
// Menue und Drehencoder
#define M_TRX1 1
#define M_TRX2 2
@ -135,38 +107,18 @@ const char CLRSCR[] = "\033[2J";
#define M_DEBOUNCE 11
#define M_MAX 11 // maximale Menuepunke
// LCD
#define CLEARLINE " "
// Sinustabelle für PWM mit 64 Werten
const unsigned char sinewave[] PROGMEM = {
0x00, 0x01, 0x02, 0x05, 0x0a, 0x0f, 0x15, 0x1d, 0x25, 0x2f, 0x39, 0x43, 0x4f, 0x5a, 0x67, 0x73,
0x80, 0x8c, 0x98, 0xa5, 0xb0, 0xbc, 0xc6, 0xd0, 0xda, 0xe2, 0xea, 0xf0, 0xf5, 0xfa, 0xfd, 0xfe,
0xff, 0xfe, 0xfd, 0xfa, 0xf5, 0xf0, 0xea, 0xe2, 0xda, 0xd0, 0xc6, 0xbc, 0xb0, 0xa5, 0x98, 0x8c,
0x80, 0x73, 0x67, 0x5a, 0x4f, 0x43, 0x39, 0x2f, 0x25, 0x1d, 0x15, 0x0f, 0x0a, 0x05, 0x02, 0x01
};
#define CLEARLINE " "
#define NORMAL 0
// Debugausgabe
char sdebug[64];
// Sidetone generation
double FrequencySidetone = 600;
volatile uint8_t icnt;
volatile uint8_t ocr2a;
// Diverse Zähler für Timer 0
uint16_t StoreEEprom = 0; // Wartezeit bis EEPROM geschrieben wird
uint16_t MenuCtrlTimer = 0; // Wartezeit bis zur Betriebsanzeige nach Config
volatile uint16_t ms; // Timer 0 max. 65535ms, all purpose timer variable
volatile uint16_t mselement; // Timer 0 max. 65535ms, element length of dit or dah
int8_t WpM = 12; // Geschwindigkeit in wpm
uint8_t Weight = 50; // Gewichtung Punkt-Strich Verhältnis
uint8_t t_element_length;
struct Merker
// Structs für Merker, Menü und Einstellungen
struct Merker
{
uint8_t WpMChanged: 1;
uint8_t WriteWpMEEprom: 1;
} bMerker;
};
struct MenuCtrl
{
@ -179,61 +131,7 @@ struct MenuCtrl
uint8_t WriteEEprom: 1;
uint8_t Update: 1;
uint8_t CurMenue;
} bMenuCtrl;
// State Machines
uint8_t MachineMode = NORMAL;
uint8_t PaddleMode = PADDLE_NORMAL;
uint8_t KeyerMode = IAMBIC_A;
uint8_t SidetoneMode = NORMAL;
uint8_t state_sidetoneoff = 0;
volatile uint8_t Mode = NORMAL;
volatile uint8_t SendStatus = SENDING_NOTHING;
volatile uint8_t LastSendStatus = MANUAL_SENDING;
// History
uint8_t keyhistory = 0xff;
uint8_t KeyTX = 1;
uint8_t DahBuffer = 0;
uint8_t DitBuffer = 0;
uint8_t Weighting = 50;
uint8_t IambicFlag = 0;
uint8_t KeyState = 0;
uint8_t DitCounter = 0;
uint8_t DahCounter = 0;
uint8_t CurrentTRX = TRX1;
uint8_t StateRiseTime = 0;
volatile uint8_t StateRiseTimeCounter = 0;
// Variablen in Timer 0
volatile uint16_t l_timer = 0; // counter for LED on
volatile uint8_t t_timer = 0; // Frequency of audio output
volatile uint16_t t_wait = 0; // delayms max. 65535ms
volatile uint8_t t_pwm = 0;
volatile uint16_t t_wait_led = 50;
volatile uint8_t lastButton = 0; // Wert der letzten Buttonabfrage
// Drehencoder
volatile uint8_t EncoderTimer = 0; // 10ms Timer for Encoder
volatile int8_t EncoderCounter = 0; // Vor/Rück Zähler
volatile int8_t EncoderPos; // Encoderposition für WpM/BpM
volatile int8_t EncoderPosConfig; // Encoderposition für Einstellungen
volatile uint8_t StateStraightKeyPressed = 0; // Merker für StraightKey betätigt
volatile uint8_t TimerStraightKeyPressed = 0; // Timervariable für Entprellung
// EEPROM
uint8_t Dummy = 0x55;
uint8_t ee_Dummy EEMEM = 0x55; // Dummy for Address 0
uint8_t ee_WpM EEMEM = 12; // WpM
uint8_t ee_Sidetone EEMEM = 0; // Mithörton An (1) oder Aus (0)
uint16_t ee_FrequencySidetone EEMEM = 600; // Frequenz des Mithörtons
uint8_t ee_IambicMode EEMEM = 0; // Iambic Mode A oder B
uint8_t ee_Weight EEMEM = 50; // Dah dit Ratio
uint8_t ee_TRX EEMEM = 0; // TRX 1 (0), TRX 2 (1), Beide (2)
};
struct Config
{
@ -250,28 +148,62 @@ struct Config
uint8_t RiseTimeCounter; // Anzahl Sinusschwingungen für den Anstieg
uint8_t DebounceTime; // Entprellzeit für Straight Key Eingang
uint8_t WinkeyerEnabled; // Winkeyer2 Emulation
} bConfig;
// Function prototypes
void Init(void);
void InitTimer(void);
};
void CheckDahPaddle(void);
void CheckDitPaddle(void);
void CheckPaddle(void);
void CheckStraightKey(void);
void SendDit(uint8_t SendingType);
void SendDah(uint8_t SendingType);
void PTTKey(uint8_t State);
void SideToneOff(void);
void SideToneOn(void);
void TXSidetoneKey(uint8_t State, uint8_t SendingType);
void SendChar(uint8_t);
void ChangeSpeed(void);
// Drehencoder
volatile uint8_t EncoderTimer; // 10ms Timer for Encoder
volatile int8_t EncoderCounter; // Vor/Rück Zähler
volatile int8_t EncoderPos; // Encoderposition für WpM/BpM
volatile int8_t EncoderPosConfig; // Encoderposition für Einstellungen
uint16_t StoreEEprom;
void dah(void);
void dit(void);
void DoMorse(void);
// Globale Variablen für diverse Zwecke
uint8_t WpM;
uint8_t Weight;
uint8_t t_element_length;
// Diverse Zähler für Timer 0
uint16_t MenuCtrlTimer; // Wartezeit bis zur Betriebsanzeige nach Config
volatile uint16_t t_delayms; // Timer 0 max. 65535ms, all purpose timer variable
volatile uint16_t mselement; // Timer 0 max. 65535ms, element length of dit or dah
// State Machines
uint8_t PaddleMode;
uint8_t KeyerMode;
uint8_t state_sidetoneoff;
void SetFrequency(uint16_t f);
volatile uint8_t SendStatus;
#endif // BJ-KEYER_H_INCLUDED
// History
uint8_t keyhistory;
uint8_t KeyTX;
uint8_t DahBuffer;
uint8_t DitBuffer;
uint8_t Weighting;
uint8_t IambicFlag;
uint8_t KeyState;
uint8_t DitCounter;
uint8_t DahCounter;
uint8_t CurrentTRX1;
uint8_t StateRiseTime;
volatile uint8_t StateRiseTimeCounter;
// Sidetone generation
double FrequencySidetone;
volatile uint8_t icnt;
volatile uint8_t ocr2a;
// Variablen in Timer 0
volatile uint16_t l_timer; // counter for LED on
volatile uint8_t t_timer; // Frequency of audio output
volatile uint16_t t_wait; // delayms max. 65535ms
volatile uint8_t t_pwm;
volatile uint16_t t_wait_led;
volatile uint8_t lastButton; // Wert der letzten Buttonabfrage
volatile uint8_t StateStraightKeyPressed; // Merker für StraightKey betätigt
volatile uint8_t TimerStraightKeyPressed; // Timer Variable für Entprellung
volatile uint8_t StatePaddleKeyPressed; // Merker für Paddle betätigt
volatile uint8_t TimerPaddleKeyPressed; // Timer Variable für Entprellung
#endif

@ -57,14 +57,15 @@
@endverbatim
*/
#include "bj-keyer.h"
// Additional files
#include "functions.c"
#include "main.h"
#define LENGTH 256
#define AMP 127
#define OFFSET 128
#define PI2 6.283185
// Sinustabelle für PWM mit 64 Werten
const unsigned char sinewave[] PROGMEM = {
0x00, 0x01, 0x02, 0x05, 0x0a, 0x0f, 0x15, 0x1d, 0x25, 0x2f, 0x39, 0x43, 0x4f, 0x5a, 0x67, 0x73,
0x80, 0x8c, 0x98, 0xa5, 0xb0, 0xbc, 0xc6, 0xd0, 0xda, 0xe2, 0xea, 0xf0, 0xf5, 0xfa, 0xfd, 0xfe,
0xff, 0xfe, 0xfd, 0xfa, 0xf5, 0xf0, 0xea, 0xe2, 0xda, 0xd0, 0xc6, 0xbc, 0xb0, 0xa5, 0x98, 0x8c,
0x80, 0x73, 0x67, 0x5a, 0x4f, 0x43, 0x39, 0x2f, 0x25, 0x1d, 0x15, 0x0f, 0x0a, 0x05, 0x02, 0x01
};
/**
* \brief Initialsieren der Timer
@ -103,7 +104,7 @@ void InitTimer(void)
OCR2A = 0x80;
sbi(DDRB,PB3);
cbi(TIMSK2,OCIE0A);
// Timer 1 für die Sinus Hüllkurve
TCCR1A = 0; TCCR1B = 0; TIMSK1 = 0;
// CTC Mode
@ -130,10 +131,7 @@ void InitTimer(void)
void Init()
{
cli(); // disable all interrupts
MachineMode = NORMAL;
SendStatus = SENDING_NOTHING;
// PORTB
DDRB = 0x00;
// Interne PullUps einschalten
@ -205,18 +203,7 @@ void Init()
bConfig.WinkeyerEnabled = 0;
sei(); // enable all interrupts
}
/** \brief 16 Bit Timer 1A
*
* Timer 1A interrupt
* Overflow interrupt every 64µs
*
*/
//ISR(TIMER1_OVF_vect)
//{
// //sCurrentTimer += 0xffff;
// PORTD ^= (1<<PD1);
//}
//
ISR(TIMER1_COMPA_vect)
{
ocr2a = pgm_read_byte_near(sinewave+icnt);
@ -253,16 +240,14 @@ ISR(TIMER1_COMPA_vect)
}
}
/** \brief 8 Bit Timer 0
/** @brief 8 Bit Timer 0 ISR routine
*
* The Timer 0 CTC interrupt
* Dieser Interrupt wird jede Millisekunde erzeugt
* The Timer 0 CTC interrupt will be fired every millisecond
*
*/
ISR(TIMER0_COMPA_vect)
{
ms++; // allgemeiner Millisekundenzähler
t_delayms++; // 16Bit counter for milliseconds
StoreEEprom++; // Zähler für Zeitablauf speichern EEprom
MenuCtrlTimer++; // Zähler für Zeitablauf Einstellungen
EncoderTimer++; // Zähler für 5ms Drehencoder Timer
@ -301,20 +286,18 @@ ISR(TIMER0_COMPA_vect)
}
// Softwareentprellung für StraightKey
TimerStraightKeyPressed++;
if(StateStraightKeyPressed == 1)
if(StateStraightKeyPressed == KEY_PRESSED_DEBOUNCE)
{
if(TimerStraightKeyPressed > bConfig.DebounceTime)
StateStraightKeyPressed = 2;
StateStraightKeyPressed = KEY_PRESSED;
}
// Softwarentprellung für Paddle
TimerPaddleKeyPressed++;
if(StatePaddleKeyPressed == KEY_PRESSED_DEBOUNCE)
{
if(TimerPaddleKeyPressed > bConfig.DebounceTime)
StatePaddleKeyPressed = KEY_PRESSED;
}
// Konfiguration nach 3 Sekunden verlassen
// if((MenuCtrlTimer > 3000) && (bMenuCtrl.Config == 1))
// {
// bMenuCtrl.Config = 0;
// bMenuCtrl.Update = 1;
// bMenuCtrl.ClrScr = 1;
// BeepBoop();
// }
}
/** \brief 8 Bit Timer 2
@ -326,12 +309,12 @@ ISR(TIMER0_COMPA_vect)
*/
ISR(TIMER2_OVF_vect)
{
// phaccu = phaccu + tword_m;
// icnt = phaccu >> 24;
// OCR2A = pgm_read_byte_near(sinewave+icnt);
/* nothing */
}
/** @brief Interrupt RX serielle Schnittstelle
* @param none
* @return none
*/
ISR(USART_RX_vect)
{
unsigned char data;
@ -339,57 +322,6 @@ ISR(USART_RX_vect)
SendSerialChar(data);
}
/** \brief ClearSendBuffer
*
*/
void ClearSendBuffer(void)
{
// sendbufferbytes = 0;
}
/** \brief CheckDitPaddle
*
*
*/
void CheckDitPaddle(void)
{
uint8_t pinvalue = 0;
uint8_t ditpaddle = 0;
if(PaddleMode == PADDLE_NORMAL) // no reverse paddle
ditpaddle = LEFT_PADDLE;
else
ditpaddle = RIGHT_PADDLE; // reverse paddle
pinvalue = ReadKeyPin(ditpaddle);
if(pinvalue == 0)
DitBuffer = 1;
}
/*
** CheckDahPaddle
*/
void CheckDahPaddle(void)
{
uint8_t pinvalue = 0;
uint8_t dahpaddle = 0;
if(PaddleMode == PADDLE_NORMAL) // no reverse paddle
dahpaddle = RIGHT_PADDLE;
else
dahpaddle = LEFT_PADDLE; // reverse paddle
pinvalue = ReadKeyPin(dahpaddle);
if(pinvalue == 0) {
if(DahBuffer == 0) {
DahCounter++;
DitCounter = 0;
}
DahBuffer = 1;
}
}
/*
** DoMorse
*/
@ -408,12 +340,12 @@ void DoMorse(void)
if(DitBuffer)
{
DitBuffer = 0;
SendDit(MANUAL_SENDING);
SendDit(MAN);
}
if(DahBuffer)
{
DahBuffer = 0;
SendDah(MANUAL_SENDING);
SendDah(MAN);
}
}
}
@ -424,290 +356,37 @@ void DoMorse(void)
if(DitBuffer)
{
DitBuffer = 0;
TXSidetoneKey(1,MANUAL_SENDING);
TXKey(1,MAN);
}
else
{
TXSidetoneKey(0,MANUAL_SENDING);
TXKey(0,MAN);
}
DitCounter = 0;
}
}
}
void ConfigMenue(void)
void ReStart(void)
{
char line[22];
lcd_charMode(NORMAL);
lcd_gotoxy(0,0);
lcd_puts(CLEARLINE);
lcd_gotoxy(0,0);
sprintf(line,"%s - %i","Einstellungen", bMenuCtrl.CurMenue);
lcd_puts(line);
lcd_charMode(DOUBLESIZE);
lcd_gotoxy(0,3);
lcd_puts(CLEARLINE);
switch(bMenuCtrl.CurMenue)
{
case M_TRX1:
lcd_gotoxy(0,3);
if((bConfig.TRX == 1) || (bConfig.TRX == 0))
sprintf(line,"[%s]", "TRX 1");
else
sprintf(line," %s ", "TRX 1");
lcd_puts(line);
break;
case M_TRX2:
lcd_gotoxy(0,3);
if((bConfig.TRX == 2) || (bConfig.TRX == 0))
sprintf(line,"[%s]", "TRX 2");
else
sprintf(line," %s ", "TRX 2");
lcd_puts(line);
break;
case M_IAMBICA:
lcd_gotoxy(0,3);
if(bConfig.IambicMode == 1)
sprintf(line,"[%s]", IambicA);
else
sprintf(line," %s ", IambicB);
lcd_puts(line);
break;
case M_IAMBICB:
lcd_gotoxy(0,3);
if(bConfig.IambicMode == 2)
sprintf(line,"[%s]", IambicB);
else
sprintf(line," %s ", IambicB);
lcd_puts(line);
break;
case M_REVERSE:
lcd_gotoxy(0,3);
if(bConfig.Reverse == 0)
sprintf(line,"%s", ReverseLR);
else
sprintf(line,"%s", ReverseRL);
lcd_puts(line);
break;
case M_RATIO:
lcd_gotoxy(0,3);
if(bConfig.Ratio == 30)
sprintf(line,"%s", "Ratio 3:1");
else
sprintf(line,"%s %i:1", "Ratio", bConfig.Ratio/10);
lcd_puts(line);
break;
case M_TON_FREQ:
lcd_gotoxy(0,3);
if(bConfig.FrequencySidetone == 650)
sprintf(line,"%s", "Ton 650Hz");
else
sprintf(line,"%s %uHz", "Ton", bConfig.FrequencySidetone);
lcd_puts(line);
break;
case M_TON:
lcd_gotoxy(0,3);
if(bConfig.SidetoneEnabled == 1)
sprintf(line,"%s", "Ton an");
else
sprintf(line,"%s", "Ton aus");
lcd_puts(line);
break;
case M_WPMBPM:
lcd_gotoxy(0,3);
if(bConfig.WpMBpM == 0)
sprintf(line,"%s", "WpM");
else
sprintf(line,"%s", "BpM");
lcd_puts(line);
break;
case M_RISETIME:
lcd_gotoxy(0,3);
sprintf(line,"%s %ims",RiseTime, bConfig.RiseTime);
lcd_puts(line);
break;
case M_DEBOUNCE:
lcd_gotoxy(0,3);
sprintf(line,"%s %ims",DebounceTime, bConfig.DebounceTime);
lcd_puts(line);
break;
}
bMenuCtrl.Update = 0;
lcd_charMode(NORMAL);
}
/** \brief UpdateDisplay
*
* Aktualisierung der Anzeigen auf dem Display je nach
* aktueller Funktion.
*
* DOUBLESIZE 4x10 character
* NORMALSIZE 8x21 character
*/
void UpdateDisplay(void)
{
char line[22];
if(bMenuCtrl.Update)
{
if(bMenuCtrl.ClrScr)
{
lcd_clrscr();
bMenuCtrl.ClrScr = 0;
bMenuCtrl.Update = 1;
}
if(!(bMenuCtrl.Config))
{
lcd_charMode(DOUBLESIZE);
lcd_gotoxy(4,3);
if(bConfig.WpMBpM)
sprintf(line,"%i WpM ",bConfig.WpM);
else
sprintf(line,"%i BpM ", bConfig.WpM*5);
lcd_puts(line);
lcd_charMode(NORMAL);
lcd_gotoxy(13,0);
if(bConfig.IambicMode == 1)
sprintf(line,"%s", IambicA);
if(bConfig.IambicMode == 2)
sprintf(line,"%s", IambicB);
lcd_puts(line);
lcd_gotoxy(0,0);
if(bConfig.TRX == 1)
sprintf(line, "%s", Trx1);
if(bConfig.TRX == 2)
sprintf(line, "%s", Trx2);
if(bConfig.TRX == 0)
sprintf(line, "%s %s", Trx1, Trx2);
lcd_puts(line);
}
if(bMenuCtrl.Config)
{
ConfigMenue();
}
bMenuCtrl.Update = 0;
}
}
void Drehencoder(void)
{
int8_t st = 0;
static int8_t last;
if(!(bMenuCtrl.Config))
{
EncoderMinMax(5,50);
st = EncoderRead(1);
if(bConfig.WpM != st)
{
bConfig.WpM = st; // neuen Wert in bConfig speichern
bMerker.WpMChanged = 1; // Merker für Timer 0 setzen
bMenuCtrl.Update = 1; // Merker für UpdateDisplay setzen
EncoderPos = st; // neuen Werte in EncoderPos speichern
WpM = bConfig.WpM; // neuen Wert in WpM übernehmen
cli();
StoreEEprom = 0; // Timer 0 Variable löschen für Update EEprom
sei();
}
}
if((bMenuCtrl.buttonPressed == 1) && (bMenuCtrl.Config == 0))
{
bMenuCtrl.Config = 1;
MenuCtrlTimer = 0;
bMenuCtrl.buttonPressed = 0;
EncoderPos = EncoderRead(1);
bMenuCtrl.CurMenue = EncoderPosConfig;
EncoderWrite(EncoderPosConfig);
bMenuCtrl.Update = 1;
}
if((bMenuCtrl.buttonPressedLong == 1) && (bMenuCtrl.Config == 1))
{
bMenuCtrl.Config = 0;
bMenuCtrl.Update = 1;
bMenuCtrl.buttonPressedLong = 0;
bMenuCtrl.buttonPressed = 0;
bMenuCtrl.m_buttonPressed = 0;
MenuCtrlTimer = 0;
EncoderPosConfig = EncoderRead(1);
EncoderWrite(EncoderPos);
bMenuCtrl.ClrScr = 1;
Beep();
}
if(bMenuCtrl.Config == 1)
{
if(!bMenuCtrl.buttonPressed)
{
EncoderMinMax(1,M_MAX);
st = EncoderRead(1);
sprintf(sdebug,"Encoder %i\r\n",st);
if(last != st)
{
SendSerialString(sdebug);
bMenuCtrl.CurMenue = st;
bMenuCtrl.Update = 1;
}
last = st;
}
if(bMenuCtrl.buttonPressed)
{
bMenuCtrl.m_buttonPressed = 1;
bMenuCtrl.buttonPressed = 0;
}
ReadEEpromWpM();
WpM = bConfig.WpM;
EncoderPos = bConfig.WpM;
EncoderWrite(bConfig.WpM);
EncoderPosConfig = 1;
SetFrequency(600);
MenuCtrlTimer = 0;
t_delayms = 0;
SendStatus = SENDING_NOTHING;
WpM = 15;
Weight = 50;
Init();
DisplayVersion();
KeyerMode = IAMBIC_A;
PaddleMode = PADDLE_NORMAL;
KeyTX = 1;
KeyState = 0;
if(bMenuCtrl.m_buttonPressed == 1)
{
UpdateDisplay();
switch(bMenuCtrl.CurMenue)
{
case M_TRX1:
if(bConfig.TRX == 2)
bConfig.TRX = 0;
else
bConfig.TRX = 1;
bMenuCtrl.m_buttonPressed = 0;
break;
case M_TRX2:
if(bConfig.TRX == 1)
bConfig.TRX = 0;
else
bConfig.TRX = 2;
bMenuCtrl.m_buttonPressed = 0;
break;
case M_IAMBICA:
bConfig.IambicMode = 1;
bMenuCtrl.m_buttonPressed = 0;
break;
case M_IAMBICB:
bConfig.IambicMode = 2;
bMenuCtrl.m_buttonPressed = 0;
break;
case M_REVERSE:
if(bConfig.Reverse == 1)
bConfig.Reverse = 0;
else
bConfig.Reverse = 1;
bMenuCtrl.m_buttonPressed = 0;
if(bConfig.Reverse == 1)
PaddleMode = PADDLE_REVERSE;
else
PaddleMode = PADDLE_NORMAL;
bMenuCtrl.Update = 1;
break;
case M_RATIO:
EncoderMinMax(15,30);
st = EncoderRead(1);
bConfig.Ratio = st;
if(bConfig.Ratio > 30) bConfig.Ratio = 30;
if(bConfig.Ratio < 15) bConfig.Ratio = 15;
bMenuCtrl.Update = 1;
break;
case M_TON_FREQ:
break;
}
}
}
}
/*
@ -715,58 +394,23 @@ void Drehencoder(void)
*/
int main(void)
{
Init();
lcd_init(LCD_DISP_ON);
lcd_charMode(DOUBLESIZE);
lcd_home();
lcd_puts(PRG);
lcd_gotoxy(1,2);
lcd_puts(VER);
lcd_gotoxy(2,4);
lcd_puts(CALL);
SideToneOff();
delayms(1000);
MachineMode = NORMAL;
KeyerMode = IAMBIC_A;
SendSerialString(CLRSCR);
SendSerialString("BJ-Keyer V1.00\r\n");
SendSerialString("Ready!\r\n");
ReadEEpromWpM();
WpM = bConfig.WpM;
EncoderPos = bConfig.WpM;
EncoderWrite(bConfig.WpM);
EncoderPosConfig = 1;
SetFrequency(600);
uint8_t c = 0;
ReStart();
while(1)
{
Drehencoder();
// Wenn Geschwindigkeit verändert und Zeit abgelaufen,
// dann im EEprom speichern und Merker löschen.
if(bMerker.WriteWpMEEprom)
{
{
sprintf(" %i WpM in EEprom speichern\r\n", bConfig.WpM);
WriteEEpromWpM();
bMerker.WriteWpMEEprom = 0;
}
UpdateDisplay();
if(MachineMode == NORMAL)
{
CheckStraightKey();
CheckPaddles();
DoMorse();
}
if(MachineMode == COMMAND)
{
}
CheckStraightKey();
CheckPaddles();
DoMorse();
}
}

@ -0,0 +1,36 @@
/*
* BJ-Keyer
*
* 2023-07-29 Tom, DL7BJ
*
*/
#ifndef MAIN_H_INCLUDED
#define MAIN_H_INCLUDED
#include "globals.h"
#include "encoder.h"
#include "functions.h"
struct Config bConfig;
struct MenuCtrl bMenuCtrl;
struct Merker bMerker;
// Function prototypes
void Init(void);
void InitTimer(void);
void CheckDahPaddle(void);
void CheckDitPaddle(void);
void CheckPaddle(void);
void CheckStraightKey(void);
void SendDit(uint8_t SendingType);
void SendDah(uint8_t SendingType);
void SideToneOff(void);
void SideToneOn(void);
void TXKey(uint8_t State, uint8_t SendingType);
void SendChar(uint8_t);
void ChangeSpeed(void);
void DoMorse(void);
void SetFrequency(uint16_t f);
#endif // BJ-KEYER_H_INCLUDED
Loading…
Cancel
Save